Weather Forecasting
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Purpose of Weather Forecasting
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MetNet, a Neural Weather Model

‘MetNet-2 outperforms the

Skillful Twelve Hour Precipitation Forecasts
using Large Context Neural Networks
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Joint work within Google Research

o

Nal Kalchbrenner ~ Marcin Andrychowicz Shreya Agrawal Casper Senderby

Manoj Kumar, Jonathan Heek, Carla Bromberg, Cenk Gazen, Jason Hickey, Aaron Bell, Zack Ontiveros, Samier

Merchant, Fred Zyda and others.

Google Research



What is the probability of a given amount of precipitation (rain, snow, hail)

occurring at a specific location and time?
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Discretized Prediction

p(ylx)
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Numerical Weather Prediction (NWP)

Majority of weather models are based on NWPs. Other

approaches include optical flow.

Simulation based.

NOAA'HRRR? is primarily used for comparison in this work.

NWP for short-medium forecasts on continental USA.

" National Oceanic and Atmospheric Administration

2 High Resolution Rapid Refresh (HRRR)

Weather forecast modeling

Timestep 5-10 minutes
Grid spacing 10-20 k

Vertical exchange
between levels

(| ’\ Horizontal exchange
““ between columns
1/

77
Y/

Variables at Variables in the

the surface: atmospheric column:
Temperature Wind vectors
Humidity Humidity
Pressure Clouds
Moisture fluxes Temperature
Heat fluxes Height
Radiation fluxes Precipitation

Aerosols

Credit: K. Cantner, AGI.
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Numerical Weather Prediction (NWP) vs. MetNet-style
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Features: Quick forecasts

~1hour
NWPs, depending on model, takes approximately

one hour to run. NWPs are generally not used for

short-term forecasting.

Neural network approaches take a few minutes after
data collection. They are highly efficient and highly

parallelizable.

NWP

t <5 min

MetNet
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Features: High resolution
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Features: Modeling all phenomena

Precipitation is one variable to model, a hard one.
Predicting temperature, humidity, wind, etc. is straightforward.

Also, e.g. tornados, lightning which are annotated. Even ones that are not well understood.
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Features: Transfer learning

New variable predicted = Potential for improvement across the board Deep Learning

New input added = Potential for improvement across the board

Every new advancement in the community for NLP, vision, etc. = Potential for

improvement across the board

Traditional

The essence of modern machine learning success
Approaches

and dominance.
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Goal of End to End Weather Forecasting (MetNet)
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Results, comparing to HRRR

MetNet-2 is superior to HRRR on 12+ hour forecasts, up from 8 hours with MetNet-1 (1 year prior).

High Resolution Rapid Refresh (HRRR)

NOAA's HRRR model, real-time 3 km? resolution, 1 hour time resolution, deterministic prediction.

MetNet(-2)

Neural Network model.
Probabilistic output.

1 km? resolution,

2 min time resolution.
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Results, comparing to HREF

MetNet-2 is superior to HREF on 12+ hour forecasts.

High Resolution Ensemble Forecast (HREF)

NOAA's HREF model produces ensemble products from 10 different models running at ~3 km horizontal grid

spacing, and 1 hour time resolution. Test
0.11 —o— MetNet-2
0101 NWP (HREF)
MetNet(-2) '
0.09 1
Neural Network model.
0.08 1
Probabilistic output. 2
Y 0.07
1km? resolution,
0.06 1
2 min time resolution. 005
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Continuous Ranked Probability Score (CRPS). Lower is better.
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Probability Maps

Ground Truth
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MetNet-2 outputs probabilities, which we can optionally threshold to obtain a deterministic prediction.

Here we show the probabilities for different amounts of precipitation over an optimized threshold.
Lighter color means less certain.

We see both additional structure and certainty, as well as declining Google Research
certainty over time (as expected.)



Ground Truth

MetNet-2

NWP (HREF)
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(a) Case study for Thu Jan 03 2019 12:00 UTC of the North West coast of the US.
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Architecture: Context and Dilation
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Architecture: Inputs and Full View
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Model Parallelism on TPUs

JAX

Cloud TPU v3
420 teraflops
128 GB HBM

Cloud TPU v3 Pod

100+ petaflops
32TB HBM

2-D toroidal h network
oroidal mesh networ Google Research



Interpretation by integrated Gradients

Consistent with Quasi-Geostrophic Theory.

Attribution
Attribution

2 4 6 8 10 12
Forecast Hour

(b) At 250 hPa of 1-12hr forecasts

200 400 600 800 1000
hpa
(a) At different pressure levels

Figure 7: Attribution of Absolute Vorticity
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Interpretation by integrated Gradients

V component of wind at 375hPa
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Hybrid Models

Test at 1.00mm
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“We need to get rid of the dynamical core”
Prof. Dale Durran, University of Washington, ‘22

WE NEED TO GET RID OF THE DYNAMICAL CORE

« State-of-the-art NWP models require enormous computer resources for each
forecast

» Completely replacing NWP with Deep Learning Weather Prediction (DLWP) may
» Reduce the time required for each forecast by orders of magnitude

« Address uncertainty by

» Allowing a large number O(1000) of simulations of likely future states (ensembles)
W11l Presenter: Dale Durran

» Giving better probabilistic forecasts

« Capturing extreme events &

DURRAN UNIVERSITY OF WASHINGTON, 2021 3
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Visualization 1

MetNet-2

Google Research



Visualization 2
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Visualization 3

MetNet-2
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