Weather Forecasting with Deep Learning A paradigm shift

Lasse Espeholt

My Background

Purpose of Weather Forecasting

MetNet, a Neural Weather Model

"MetNet-2 outperforms the state-of-the-art physics-based ensemble model HREF for weather forecasts up to 12 hours ahead."

Joint work within Google Research

Nal Kalchbrenner

Marcin Andrychowicz

Shreya Agrawal

Casper Sønderby

Manoj Kumar, Jonathan Heek, Carla Bromberg, Cenk Gazen, Jason Hickey, Aaron Bell, Zack Ontiveros, Samier Merchant, Fred Zyda and others.

What is the probability of a given amount of precipitation (rain, snow, hail) occurring at a specific location and time?

Numerical Weather Prediction (NWP)

Majority of weather models are based on NWPs. Other approaches include optical flow.

Simulation based.

NOAA¹ HRRR² is primarily used for comparison in this work. NWP for short-medium forecasts on continental USA.

¹National Oceanic and Atmospheric Administration

² High Resolution Rapid Refresh (HRRR)

Weather forecast modeling

Credit: K. Cantner, AGI.

Observation

Probabilistic / Deterministic Forecast

Observation

Probabilistic / Deterministic Forecast

Features: Quick forecasts

NWPs, depending on model, takes approximately one hour to run. NWPs are generally not used for short-term forecasting.

Neural network approaches take a few minutes after data collection. They are highly efficient and highly parallelizable.

Features: High resolution

MetNet

Temporal resolution:2 minSpatial resolution:1 km

NWP (HRRR)

Temporal resolution:1 hrSpatial resolution:3 km

Emdrup Grundtvigs Kirke NORDHAVNEN Utterslev ØSTERBRO BRØNSHØJ Zoologisk Museum BRØNSHØJ NØRREBRO Assistens Kirkegård 🕰 ANLØSE KØBENHAVN K Frederiksberg Copenhagen KØBENHAVN V VESTER RO/ KONGENS ENGHAVE Amagerbro VALBY AMAGER EASI 'igerslev Sundbyøster Hvidovre Hospital **KØBENHAVN S** 151 Sundbyvester lovre Valbyparken Field's ᅌ E20

Features: Modeling all phenomena

Precipitation is one variable to model, a hard one.

Predicting temperature, humidity, wind, etc. is straightforward.

Also, e.g. tornados, lightning which are annotated. Even ones that are not well understood.

Features: Transfer learning

New variable predicted \Rightarrow Potential for improvement across the board

New input added \Rightarrow Potential for improvement across the board

Every new advancement in the community for NLP, vision, etc. \Rightarrow Potential for improvement across the board

The **essence** of modern machine learning success and dominance.

Google Research

Deep Learning

Goal of End to End Weather Forecasting (MetNet)

Results, comparing to HRRR

MetNet-2 is superior to HRRR on 12+ hour forecasts, up from 8 hours with MetNet-1 (1 year prior).

High Resolution Rapid Refresh (HRRR)

NOAA's HRRR model, real-time 3 km² resolution, 1 hour time resolution, deterministic prediction.

MetNet(-2) Neural Network model. Probabilistic output. 1 km² resolution, 2 min time resolution.

Critical Success Index (CSI). Higher is better.

Results, comparing to HREF

MetNet-2 is superior to HREF on 12+ hour forecasts.

High Resolution Ensemble Forecast (HREF)

NOAA's HREF model produces ensemble products from 10 different models running at ~3 km horizontal grid spacing, and 1 hour time resolution.

MetNet(-2)

Neural Network model. Probabilistic output. 1 km² resolution,

2 min time resolution.

Continuous Ranked Probability Score (CRPS). Lower is better.

Probability Maps

MetNet-2 outputs probabilities, which we can optionally threshold to obtain a deterministic prediction.

Here we show the probabilities for different amounts of precipitation over an optimized threshold. **Lighter color means less certain.**

We see both additional structure and certainty, as well as declining certainty over time (as expected.)

(a) Case study for Thu Jan 03 2019 12:00 UTC of the North West coast of the US.

Architecture: Context and Dilation

Architecture: Inputs and Full View

512 x 512 x 128

Model Parallelism on TPUs

Cloud TPU v3 420 teraflops 128 GB HBM

JAX

Cloud TPU v3 Pod 100+ petaflops 32 TB HBM 2-D toroidal mesh network

Flax

Interpretation by Integrated Gradients

Consistent with Quasi-Geostrophic Theory.

Figure 7: Attribution of Absolute Vorticity

Interpretation by Integrated Gradients

Figure 21: Attribution of different weather features at 12 hour forecast

Maximum/Composite radar reflectivity

Absolute vorticity at 275hPa

V component of wind at 375hPa

Hybrid Models

"We need to get rid of the dynamical core" Prof. Dale Durran, University of Washington, '22

WE NEED TO GET RID OF THE DYNAMICAL CORE

- State-of-the-art NWP models require enormous computer resources for each forecast
- Completely replacing NWP with Deep Learning Weather Prediction (DLWP) may
 - Reduce the time required for each forecast by orders of magnitude
 - Address uncertainty by
 - Allowing a large number O(1000) of simulations of likely future states (ensembles)
 - Giving better probabilistic forecasts
 - Capturing extreme events

DURRAN

UNIVERSITY OF WASHINGTON, 2021

Thanks

lespeholt@google.com / me@lasse.co

linkedin.com/in/lasseespeholt

Visualization 1

Visualization 2

Visualization 3

